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One of the methods for controlling a boundary layer is sucking or blow- 
ing of the fluid through the surface. If the boundary layer is electric- 
ally conducting, then there is also the possibility of using magnetic 
and electric fields for the same purpose. In connection with this, it is 
interesting to investigate the effects which appear in a combination of 
both methods. 

An approximate solution of this type was found by Vatazhin [ 1 1 , who 
investigated the flow of a viscous compressible gas around a semi- 
infinite plate, with blowing and a transverse magnetic field. A very 
similarly posed problem was also studied by Lykoudis [ 2,2 1, but his 
papers differ from [ 1 I in that the gas is taken to be conducting 
throughout, and not only in the boundary layer. 

In the solutions mentioned, the influence of the induced component of 
magnetic field along the surface was neglected. Therefore, within the 
framework of such a theory, it is not possible to include magnetohydro- 
dynamic effects which arise from the interaction of the transverse 
(normal to the surface) flow with the induced field. For studying these 
effects it is necessary to proceed either from the full system of equa- 
tions of magnetohydrodynamics or from the boundary-layer equations de- 
veloped by Zhigulev [ 4 1. The solutions of some particular solutions of 
similar type are published in the papers of Gupta [ 5 I, Yasuhara [ 6 1 , 
and Greenspan [ 7 1 . 

In the present paper an attempt has been made to ascertain the possi- 
bility of a more general approach to problems of longitudinal flow past 
porous cylindrical surfaces, similar to what has been done for internal 
and external rectilinear flows [ g,G I. 
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1. Let us consider a porous cylindrical surface S in a basic flow in 
the direction of a generator. We will assume that the contour C of the 
cross-section of the surface is smooth and closed, and that the flow is 
external. 

If the flow is stationary, the fluid incompressible, and its physical 
properties constant, then the velocity, the magnetic field and the pres- 
sure in the flow are determined from the equations 

p (YV) v = - c/l* f- x (HO) II 7 ysv, div V = 0 

(l-7) I1 = (H‘;;) V + v,,,C.H, rliv H = 0 (1.1) 

where p* = p +KH~/~, K = /~/4n, u,,, = c2/4~~o, and the remaining 
symbols are well known. The electric field and the current density are 
found from the relations 

rot H = '$ j, j = s[Ef IL v x1-1) 
C (1-2) 

As an initial assumption, we shall take the velocity components and 
the components of the magnetic field normal to the basic flow to be con- 
stant along a generator of the surface. 'Ihen, putting the z-axis parallel 
to a generator, we may write 

v = v, + vez, VL = v, (5, y) e, i- vv (5, y) e,, v = Vz(L, y) 

H = H, + he,, HL = H, (5, Y) e, + H,, (5, Y) e,, h = H, (9, y, z) 

Putting this into Equations (1.1) and projecting the first and third 
of them on the xy-plane and the z-axis, we obtain 

(1.3) 

p (VIc7) VI = - ‘VP* + x (HIV) H, + @v, (v’ = e,& T e!,;) 

pV,Vu = - '$+ xHIVh +xh;+qAv s (1.4) 

(V,V)H, = (H,O)VI + ~rni?H~ (1.5) 

VIVh +z;=HIVo+ v&h (1-G) Y 

div V, = 0 (1.7) 

divHI. +g = 0 or div HI = - 0 (5, y), h = ~0 (5, Y) +h,(s, Y) (1.8) 

from which it irnnediately follows from (1.3), (1.4) and (1.8) that 
d2p* az2 = const. 

It is necessary also to formulate the equations describing the flow 
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and the electromagnetic field inside the body. If it is assumed that the 
body can move only in the direction of its axis with constant velocity 
V ~, and that the vectors of the transverse velocity and transverse mag- 
netic field for the region inside the body do not depend on z, then the 
following cases can occur. 

a) Flow over a porous body with internal sources of fluid. ‘lhe mag- 
netic field is described by equations of the type (1.5), (1.6) and (1.8) 
where v = v,,, and V, is either given or is determined with the help of 
auxiliary equations, for example, magnetohydrodynamic equations of the 
type (1.3), (1.7) or equations of the theory of filtration. 

b) Flow over a non-porous body having a continuous distribution of 
sources on its surface. Ihe magnetic field inside the body is described 
by Maxwell’s equations. 

On the surface of the body, the usual conditions on the velocity and 
the magnetic and electric fields have to be satisfied: 

v = VW, v, = 0, [L’,l = q, [pm = 0, IE,l = 0 
USI = 0, [hl = 0, [H,l : 0 on s (l-9) 

Here the last two equations apply if surface currents are absent, i.e. 
for finite conductivity of both mediums. A jump at S is defined here as 
[al = a - alo, where the index w refers to the body, and the indices n, 
r refer to vector components normal to S and tangential to 2, respectively. 
We will take the density of the surface distribution of fluid sources to 
be given. 

Asymptotic conditions defining the behavior of p*, u, h at infinite 
distance from the body must also be given. Analogous conditions for V, 
and H, play an auxiliary role; as will be shown, they cannot always be 
arbitrarily specified. 

It is necessary to dwell in more detail on the continuity conditions 
for the electric field in (1.9), which, with the help of (1.2) and the 
other equations (1.9)) may be put in the form 

ytll L 
a& aHT 

ar 
--) + v,HS = 2 [vmw(+’ -.f$) + c,,,H,j 

dn , 
(1.10) 

ah -- 
vm an 

v& = 5 
P 

( 
ah,,, 

on S 
v,,-- - 

d/l vnw h) (1.11) 

The terms containing the transpiration velocity vanish for q = 0, 
p, = p, and also for vsID + 0 (flow past a dielectric). For infinite con- 
ductivity of the body (urn0 = O), it is, generally speaking, not possible 
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to obtain in this way such simple boundary conditions as in problems 
without porosity [ 9 1. 

2. Let us return now to the analysis of bations (1.3) to (1.8). 
Cases are possible for which their solution reduces to a successive solu- 
tion of very simple and even linear equations. This may occur, in 
particular, for H: = aVI, when the transverse flow aligns itself with 
the lines of force of the transverse magnetic field. In fact, with this 
assumption, Equations (1.3) to (1.8) take the form 

YL (VL Ca) = v,,, I?. (--;la-7) V, 4- a.SjrI i- v,Aal (3.3) 

(2.3) 

div \*' = 0, JrLr,'a = - 0 (3.4) .- 

Introducing the expressions for h from (1.8) into (2.31, and separat- 
ing the z-terms, we obtain 

lkus, if V, a, 6' are found from Equations (2.2), (2.41, (2.6), so 
that a solution of Equation (2.1) for p* exists (i.e. rot of its left- 
hand side becomes zero), then u and h, are subsequently determined from 
the linear equations (2.5). The system of equations with respect to 1. - 
a, 8 is, generally speaking, over-determined, and its solution may exist 
only in isolated cases, for which the form of the solution will at the 
same time indicate the possible form of the boundary conditions. It is 
not possible to reveal the totality of solutions here by elementary means, 
but, nevertheless, some important classes of solutions can be effectively 
studied - for example, for flows with pseudo-plane (in the sense of 
Barker) magnetic field, when 0 = 0, H = H(x, y) and, in view of (2.41, 
a = a($), where + is the stream function of the transverse motion. kn- 
other series of solutions is obtained if it is assumed that V, or Ii: is 
a constant vector and the surface S is a plane, etc. 

3. Let us investigate Equations (2.1) to (2.4) in more detail for the 
simplest case, when a = const. We note first that Equations (2.2) and 
(2.4) are more simply equivalent to 



934 S.A. Regirer 

div V, = 0, rot V L = Be, (3.1) 

where a is an arbitrary constant. The proof is obvious if the identity 
rot rot v, = - A v, is introduced into (2.2) and account is taken of 
the fact that V1does not depend on z. Equation (1.2) may be expressed 
as follows: 

(3.3) 

It is obvious that the vorticity R is proportional to the current density 
in the direction of the basic flow. It follows that in the absence of 
such a flow at infinite distance from the body the transverse flow must 
be potential. 

Assume that the transpiration velocity v, is given on S as a function 
of the arc length on C. If the stream function is introduced into (3.1) 
in the usual way, then with (1.9) we obtain the interior boundary value 
problem 

which reduces in principle to the determination of the singularities of 
$ at infinity. 

An analogous interior problem appears in looking for the transverse 
magnetic field H,, inside the body, if r3hw/dz = 0, the body is non- 
porous or H,, = cz\'l,, inside it, and its conductivity is finite. In 
fact, in that case, in accordance with Section 1, A HI,,, = 0, divH:,,.=O. 
Introducing the vector potential of the field, these equations give 
AAw = - (4n/c)j,, where j, = const, where the conditions on S (or, what 
is the same thing, on Z) for Am are obtained in the same way as in (3.3): 

(3.4) 

'Ibe determination of A, reduces to the determination of the singular- 
ities or the magnetic field sources inside the body. If the body is 
porous and HL,,. = aVl,,., then a similar problem may also be formulated 
for the stream function I/J,. It is evident that the inverse problem, to 
find $, Am or $= satisfying Poisson's equation and conditions of the type 
(3.3) forgiven singularities, may not have a solution, even if f(s) is 
taken to be unknown. 

Not dwelling further on these questions, we shall show that, in the 
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majority of practically interesting cases, problems of type (3.3) for 
interior and exterior regions have a solution; furthermore, this solu- 
tion satisfies (for !A= 0) such auxiliary conditions as boundedness of 
V, and HIat infinity. lhe inconvenience of the possible appearance of 

infinite values of H,, inside the body is somewhat compensated by the 
fact that the solution as a whole gives a magnetic field normal to the 
surface, in the flow region which, in some sense, is the generalization 
of a homogeneous field. 

We note also that, in view of Equations (1.10) and (3.2), the constant 
0 and j, are connected by the relation R= (4no,/cao), which shows 
that, in the absence of a longitudinal current in the body, the trans- 
verse flow is potential. It is evident that the quantities R and j, are 
not obtained from the solution of the problem, and one of them has to be 
given at the start. 

Returning to Equations (2.1), (2.3) it is easy to see that for 
ah/& = 0, (I = const, and a not too rapid increase in the transverse 
velocity, all the terms in (2.3) vanish at infinity, from which 
Jp*- /Jz = 0. Integration of Equation (2.1), taking into account (3. l), 
now makes it possible to find the magnitude of the total pressure in the 
form 

p* = p*co+ @a2 - p) (‘Q$ + v,212), I)* cc) = const (3.5) 

Introduce the dimensionless variables and parameters 

where L, u0 are characteristic values of the body dimensions and the 
velocity. Then, omitting the primes on the dimensionless quantities, in 
place of (2.3) we obtain 

RVLy?(z’ - S/t) = Au, R,,,V,V(IL - u) = 311 

Putting 
Ui = 2, + xill, Ri = Km (N - Xi) (3.7) 

X1,? = 1 IN - 1 irV(Ai - 1)” -F 4NSl 

it becomes possible to separate variables and to obtain for them the 
identical equations 
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Such a transformation was used earlier in the solution of magneto- 
hydrodynamic flow problems in the Oseen approximation [lo 11 It is use- 
ful if, from the initial conditions on v and h, it is possible to 
construct all the necessary conditions on ui. A similar transformation 
of Equations (2.3) exists also in the more general case, where a = a($), 
ap*/az fL 0. 

Equations (3.8) preserve their form in going over to an arbitrary iso- 
thermal coordinate system rl(x, y), c2(n, y), characterized by the equa- 
tions AL, = AC2 = U[nv<2 = 0, i.e. 

If the transverse flow is irrotational (a= 0) and its complex poten- 
tial is '4 = + + i$r, then we may put cl = 4, r2 = $ and 

(3.10) 

A similar simplification can be obtained also in the case of rota- 
tional flow, when the streamlines coincide with streamlines of a poten- 
tial flow, i.e., for += $K,). F rom Equation (3.3) it follows that in 
this case $"(-[,)( Vr,)2 = - Q, and, in accordance with the results of 
111 1) for AC2 =-0 and (V12)2 = f(c2), the lines r2 = const map a 
family of either parallel straight lines or concentric circles. Conse- 
quently, for Q= 0 it is possible to investigate problems of longitudinal 
flow past a plate and a double wedge, for which (3.9) takes the form 

R. a2ui d$ aui ia, 

' 42 % -@+3p (i = 1, 2) 

For all other surfaces, for a&&O, a coordinate transformation of the 
type written above allows the construction of an integral equation equi- 
valent to (3.9), if the Green's function is known for the given boundary- 
value problem in potential flow (cf., for example, 112 I). Due to the 
fact that the condition of boundedness of V, and HIat infinity is not 
met, in general, for a flow with constant vorticity, these problems are 
of comparatively little interest. 

In the case of potential transverse flow, Equations (3.10) have the 
particular solution 

Ui (9) = Ci + Di exp Riq (i = 1,‘) (3.11) 

where Ci, Di are constants. It is suitable for problems in which the 
boundary values and the asymptotic behavior of ui do not depend on $r. 
Having constructed a simple solution of the flow past a flat plate 
($b=+y, +=+x, uy= k l), it is not difficult, on the basis of 
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Equations (3.11), to study the flow past other cylindrical bodies with 
the help of coordinate transformations. 

4. Let us conclude with a consideration of some peculiarities of the 
flow past dielectric bodies, when the transverse flow is known to be 
potential. From the equations jw = (c/4n) rot H, = 0, vmw -) 0 it is easy 
to conclude that inside the body hw =-const and condition (1.11) is 
satisfied automatically. Consequently, u = uw, h = hw on the surface, or 

lli = V, + Xih,, = Ui,~ on S (i = 1,2) (4.1) 

Assuming that v + V, = const, h + h, = const at infinite distance 
from the body i.e. 

Ui TV, f Xi12, = Uioo (i = 1.2) (4.2) 

we may make use of the solution (3.11). We note now that Ui(~) and + 
take on constant values on 2; furthermore, 4 has no singularities at 
finite distances from the body. 'Iherefore, in view of the transformations 
of Section 3, it may be concluded that the streamlines $I= const go to 
infinity, and along them + grows without bound in absolute value: lim $ = 
It m for d/(x2 + y2) + m. The upper and lower signs here correspond to 
blowing and sucking at the surface of the body. Thus it is possible to 
investigate the asymptotic behavior of the solution (3.11) without going 
over to the primary coordinate system. 

It is iavnediately discovered that conditions (4.2) can be fulfilled 
only for R, 2 4 < 0. As is clear from (3.7), a flow satisfying the four 
independent'conditions (4.1), (4.2) exists only for suction with super- 
Alfven velocity (< < 1, 4 < 0). If the velocity of the transverse flow 
in sub-Alfven ([ > l), then, for suction and for blowing, one of the 
quantities R& will be positive, and of the conditions (4.1), (4.2) only 
three can be independent. Finally, for blowing with super-Alfven velo- 

city, R, 2 > 0, and then only quasi-solid body motion is possible, with 
v I vw, h = hw. It should b e emphasized that only the solutions with 
[ < 1 are continuous generalizations of the results of ordinary hydro- 
dynamics, in which r = 0. 

In conclusion, we shall calculate the drag of the dielectric body per 
unit length: 

(4.3) 

Going to dimensionless quantities and coordinates +, $, we obtain 

(4.4) 
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For solutions of type (3.11) the function in the integral does not 
depend on $ and, consequently 

where Q is the total dimensionless strength of the fluid sources on the 
surface of the body and in its interior, per unit length. 

It should be remembered that the discussion of Section 4 makes sense 
only when along the surface contour the transpiration velocity u, does 
not change its direction with respect to the normal and is not identical- 
ly equal to zero. 

Limiting cases of longitudinal flow -:without magnetic field with 
potential transverse flow, and without transverse flow (non-porous sur- 
face) with transverse potential field -:may be obtained, respectively, 
for a+ 0 and V, -+O,Va &II-,. 
formulas (especially Sections 3, 

Ilowever, in this case, many of the 
4) will undergo fundamental changes, 

and therefore these cases are best investigated directly on the basis of 
Equations (1.3) to (1.8). 
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